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Introduction

Presentation

Q Internship from March to July 2011

@ Image analysis for diagnostic assistance

© Previous work : state of the art

@ Programming language : Python 2.7
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Introduction
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Image content understanding : sequential approach

t=1

Christophe Rigaud


http://www.christophe-rigaud.com

Introduction
[ ]

Problem statement

How to represent and use non quantitative informations for image content
understanding 7

1 e.g. vessels are not included in bones = topology

2 e.g. vessels are more bright than liver = photometry
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Introduction
[ ]

What about state of the art?

Image interpretation with a priori conceptual knowledges

Example : topological (e.g A include B), relative distance (e.g. A close to B),
relative position (e.g. A is left to B)
= Not common in image interpretation

2 Nature

Quantitative (e.g. distance, intensity) !
Non quantitative (e.g. inclusion, intersection)?

s Representation as graph 3

Contextual addition : active node 2

Contribution

Sequential approach with topological and photometrical knowledges.

1. [3] C. Hudelot, J. Atif, and 1. Bloch, Fuzzy spatial relation ontology for image interpretation, Fuzzy Sets and
Systems, 2008

2. [2] J.-B. Fasquel, V. Agnus, An interactive medical image segmentation system based on the optimal man-
agement of regions of interest, Computer Methods and Programs in Biomedicine, 2006

3. [1] A. Deruyver, Y. Hodéb, and L. Brun, Image interpretation with a conceptual graph, Artificial Intelligence,
2009
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Steps

Representation
1 Knowledge (conceptual information)

2 Segmentation process (contextual information)

Formalization (inference engine)

* Region of interest (topology)

2 Number of classes (photometry)

s Class ordering (photometry)

Evaluation Application
* Synthetic images t Medical images
2 Clustering algorithm 2 Cluster identification

s Method's benefits quantification s Windowing for volume rendering
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Knowledge representation

Road map

e Knowledge representation
@ Topology & photometry
@ Segmentation process
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Knowledge representation
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Topology & photometry (conceptual informations)

Graph
* Nodes are regions (e.g 0, 1, A, B, liver, tumor)

2 Edges are relations (e.g. include, less bright than)

Topology ?
1
A\ T
o PN\ 2 3
2 3
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Knowledge representation
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Segmentation process modeling (contextual information

Add contextual information to the previous graph
*  Active node = type is segmented

2 Non active node = type is not segmented

PN PRI
' '
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Knowledge representation
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Segmentation process modeling (contextual information

Add contextual information to the previous graph
*  Active node = type is segmented

2 Non active node = type is not segmented
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Knowledge representation
L]

Segmentation process modeling (contextual information

Add contextual information to the previous graph
*  Active node = type is segmented

2 Non active node = type is not segmented
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Engine

Road map

e Inference engine
@ Region Of Interest
@ Number of classes
@ Results
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From the optimal region of interest...

Optimal Region Of Interest?!

O U xO|u

1€GT 2 (u) i€Se|lueGr ()

ROI

R:(D) = X:(A)
R:(D) = X:(A) \ X¢(C)

1. [2] J.-B. Fasquel, V. Agnus, Computer Methods and Programs in Biomedicine, 2006
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.. to the number of classes

List of classes <> lobes in the histogram

Le(w) = {i € (6F(GrA) N (S\$)) | (673() N Gri(u) #0) } U Gri(w)
(2)

Cardinality Identification

A priori number of classes in the ROI : Ordering by photometry :

Ne(u) = |Le(u)| O:(u) = ord{Le(u)}

N¢(D) = |L:(D)| = |B, E, D, A| 0:(D) = ord{B, E, D, A}
O:(D)={A,E,B,D}
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Engine
o

Results

Conclusion

* Not easy as it seems
2 Limit of the study for the number of classes

Segmentation of a type in once = no multiplicity
Types are all in the image = no optionality
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Evaluation

Road map

o Evaluation
@ Presentation
@ Clustering algorithm
@ Reduction of polluting data and volume
@ Number of classes
@ Centroid initialization
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Evaluation
[ ]

Presentation

Which evaluation protocol ?

Difficulties

2 Choice of the clustering algorithm

2 Procedure (contextual information)

s Data (e.g. noise, brightness, region)

Evaluation
*  K-Means clustering
2 Synthetic images
s Benefits of knowledge

Reduction of polluting data and volume
K-Means parameterization
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Evaluation
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Clustering algorithm

Study limited to only one clustering algorithm to illustrate each benefits.

K-Means

1 A widely used clustering algorithm “the simplicity and computational speed
of the K-means algorithm |[...] has made it a popular choice”*

Initialization parameters (k, centroid) “the algorithm needs initializing
values which greatly influence its terminating optimal solution ... good
initialization is crucial for finding globally optimal partitionings”*

. [4] Anna D. Peterson Ran]an Maltra and Arka P. Ghosh.
k

, A systematic evaluation of different methods for
the

g alg C Methods and Programs in Biomedicine, 2010
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Clustering algorithm
Study limited to only one clustering algorithm to illustrate each benefits.

K-Means
1 A widely used clustering algorithm “the simplicity and computational speed
of the K-means algorithm |[...] has made it a popular choice”*
Initialization parameters (k, centroid) “the algorithm needs initializing
values which greatly influence its terminating optimal solution ... good
initialization is crucial for finding globally optimal partitionings”*

Histogram

1. [4] Anna D. Peterson Ranjan Maitra and Arka P. Ghosh. , A systematic evaluation of different methods for
initializing the k lustering algorith Methods and Programs in Biomedicine, 2010
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Evaluation
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Clustering algorithm
Study limited to only one clustering algorithm to illustrate each benefits.

K-Means
1 A widely used clustering algorithm “the simplicity and computational speed
of the K-means algorithm |[...] has made it a popular choice”*
2 |nitialization parameters (k, centroid) “the algorithm needs initializing
values which greatly influence its terminating optimal solution ... good
initialization is crucial for finding globally optimal partitionings”*

Histogram

1. [4] Anna D. Peterson Ranjan Maitra and Arka P. Ghosh. , A systematic evaluation of different methods for
initializing the k lustering algorith Methods and Programs in Biomedicine, 2010
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Evaluation
o

ROI + number of classes = reduction of polluting data and volume

‘ Histogram
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Evaluation

ROI + number of classes = reduction of polluting data and volume
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Evaluation
o

ROI + number of classes = reduction of polluting data and volume

Histogram
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ROI + number of classes = reduction of polluting data and volume

4 classes

2 classes
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Number of classes = K-Means parameterization

No a priori number of clusters®

Data set
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1. [5, Ray - 1099] S Ray and R H Turi, Determination of ber of cl in k- I ing ..., Ad

in Pattern Recognition and Digital Techniques, 2007
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Number of classes + ordering = centroids = K-Means parameterization
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Evaluation
o

Number of classes + ordering = centroids = K-Means parameterization

Histogram

A B C D E 3 classes
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Evaluation
o

Number of classes + ordering = centroids = K-Means parameterization

Histogram

A B C D E 3 classes
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Point. Point Point

Careful seeding = better clustering
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Application

Road map

e Application
@ Presentation
@ Context
@ Use case : tumor
@ Use case : vessel
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Application
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Presentation

@ Visualization only : less restrictive than segmentation
@ Preliminary results for two use cases
© Medical image from IRCAD ' database (ground truth)

Tronsfer function edror

Qo ABd

2m E
o0

1. IRCAD : Institut de Recherche contre les Cancers de I'Appareil Digestif
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Application
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Presentation

@ Visualization only : less restrictive than segmentation
@ Preliminary results for two use cases
© Medical image from IRCAD ' database (ground truth)

1. IRCAD : Institut de Recherche contre les Cancers de I'Appareil Digestif
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Context

A priori knowledges

Acquisition

Acq. Liver

t=1 Inference engine

* Number of classes = 3

2 Ordering = tumor < liver < vessel

Christophe Rigaud
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Application
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Clustering and windowing for tumor
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Histogram
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Clustering and windowing for tumor

Histogram

intensity
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Clustering and windowing for tumor

Histogram

intensity

Windowing for tumor
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Application
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Clustering and windowing for vessel

Histogram

ntensity

Windowing for vessel
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Conclusion

Road map

o Conclusion
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Conclusion

Conclusion

Results
1 Generic method for image understanding

2 Non quantitative = adaptability
s Constraints :

1 Perfectly segmented masks
2 Complete graph completion

Refinements
t N type value to handle multiplicity and optionality

2 Node fully included by successors

Personal

t Very pleasant job (research, tools)

2 Formalization is not easy

8 The best part just started
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Conclusion

@ A. Deruyver, Y. Hodéb, and L. Brun.
Image interpretation with a conceptual graph : Labeling over-segmented
images and detection of unexpected objects.
Artificial Intelligence, 173 :1245-1265, 2009.

[ J-B. Fasquel, V. Agnus, J. Moreau, L. Soler, and J. Marescaux.
An interactive medical image segmentation system based on the optimal
management of regions of interest using topological medical knowledge.
Computer Methods and Programs in Biomedicine, 82 :216-230, 2006.

[3 C. Hudelot, J. Atif, and I. Bloch.
Fuzzy spatial relation ontology for image interpretation.
Fuzzy Sets and Systems, 159 :1929-1951, 2008.

@ Anna D. Peterson Ranjan Maitra and Arka P. Ghosh.
A systematic evaluation of different methods for initializing the k -means
clustering algorithm.
Computer Methods and Programs in Biomedicine, 2010.

[3 S Rayand RH Turi.
Determination of number of clusters in k-means clustering and application
in colour image segmentation (invited paper).
In Proceedings of the 4th International Conference on Advances in Pattern
Recognition and Digital Techniques. India, ISBN : 81-7319-347-9, 2007.
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