Soutenance de Master Recherche Mathématiques et Applications Spécialité : Systèmes Dynamiques et Signaux

Image interpretation and conceptual graph integrating topologic and photometric knowledge

Christophe RIGAUD

LABORATOIRE D'INGÉNIERIE DES SYSTÈMES AUTOMATISÉS

7 July 2011

Plan

- Introduction
- 2 Knowledge representation
- 3 Inference engine
- Evaluation
- S Application
- Conclusion

Road map

Introduction

- Introduction
 - Presentation
 - Image content understanding
 - Problem statement
 - State of the art
 - Steps
- 2 Knowledge representation
- 3 Inference engine
- Evaluation
- 6 Application
- 6 Conclusion

Introduction

00000

- 1 Internship from March to July 2011
- Image analysis for diagnostic assistance
- 3 Previous work : state of the art
- Programming language: Python 2.7

Image content understanding: sequential approach

Union

<u>Prob</u>lem statement

How to represent and use non quantitative informations for image content understanding?

- e.g. vessels are not included in bones \Rightarrow topology
- ² e.g. vessels are more bright than liver ⇒ photometry

What about state of the art?

Image interpretation with a priori conceptual knowledges

Example: topological (e.g. A include B), relative distance (e.g. A close to B), relative position (e.g. A is left to B)

- Not common in image interpretation
- Nature

Introduction

00000

- Quantitative (e.g. distance, intensity) ¹
- Non quantitative (e.g. inclusion, intersection) 2
- Representation as graph ³
 - Contextual addition : active node 2

Contribution

Sequential approach with topological and photometrical knowledges.

^{1. [3]} C. Hudelot, J. Atif, and I. Bloch, Fuzzy spatial relation ontology for image interpretation, Fuzzy Sets and Systems, 2008

^{2. [2]} J.-B. Fasquel, V. Agnus, An interactive medical image segmentation system based on the optimal man-

agement of regions of interest. Computer Methods and Programs in Biomedicine, 2006
3. [1] A. Deruyver, Y. Hodéb, and L. Brun, Image interpretation with a conceptual graph, Artificial Intelligence, 2009

Steps

Representation

- Knowledge (conceptual information)
- Segmentation process (contextual information)

Formalization (inference engine)

- Region of interest (topology)
- Number of classes (photometry)
- Class ordering (photometry)

Evaluation

- Synthetic images
- Clustering algorithm
- Method's benefits quantification

Application

- Medical images
- Cluster identification
- Windowing for volume rendering

Road map

Introduction

- 1 Introduction
- 2 Knowledge representation
 - Topology & photometry
 - Segmentation process
- 3 Inference engine
- Evaluation
- 6 Application
- Conclusion

Topology & photometry (conceptual informations)

Graph

Introduction

- Nodes are regions (e.g 0, 1, A, B, liver, tumor)
- ² Edges are relations (e.g. include, less bright than)

Segmentation process modeling (contextual informations)

Add contextual information to the previous graph

- Active node = type is segmented
- 2 Non active node = type is not segmented

Segmentation process modeling (contextual informations)

Add contextual information to the previous graph

- Active node = type is segmented
- Non active node = type is not segmented

Segmentation process modeling (contextual informations)

Add contextual information to the previous graph

- Active node = type is segmented
- Non active node = type is not segmented

Road map

Introduction

- Introduction
- 2 Knowledge representation
- 3 Inference engine
 - Region Of Interest
 - Number of classes
 - Results
- Evaluation
- 6 Application
- 6 Conclusion

(1)

From the optimal region of interest...

Optimal Region Of Interest
1

$$R_t(u) = \left(\bigcup_{\substack{I \in G_T^{-1}(u)}} X_t(\overline{I})\right) \cup \left(\bigcup_{\substack{i \in S_t \mid u \in G_T^{-\infty}(i)}} X_t(i)\right)$$

Introduction

$$R_t(D) = X_t(\bar{A})$$

$$R_t(D) = X_t(A) \setminus X_t(C)$$

... to the number of classes

List of classes \Leftrightarrow lobes in the histogram $L_t(u) = \left\{ i \in \left(G_T^{\infty}(G_{T,t}^{-1}(u)) \cap (S \setminus S_t) \right) \mid \left(G_{T,t}^{-1}(i) \cap G_{T,t}^{-1}(u) \neq \emptyset \right) \right\} \cup G_{T,t}^{-1}(u) \tag{2}$

Example Nb pouls A E B C D F

Cardinality

A priori number of classes in the ROI :

$$N_t(u) = |L_t(u)|$$

$$N_t(D) = |L_t(D)| = |B, E, D, A|$$

$$N_t(D) = 4$$

Identification

Ordering by photometry:

$$O_t(u) = \operatorname{ord}\{L_t(u)\}\$$

 $O_t(D) = \operatorname{ord}\{B, E, D, A\}$

$$O_t(D) = \{A, E, B, D\}$$

Results

Conclusion

- Not easy as it seems
- 2 Limit of the study for the number of classes
 - Segmentation of a type in once ⇒ no multiplicity
 - Types are all in the image ⇒ no optionality

Road map

Introduction

- 1 Introduction
- 2 Knowledge representation
- 3 Inference engine
- Evaluation
 - Presentation
 - Clustering algorithm
 - Reduction of polluting data and volume
 - Number of classes
 - Centroid initialization
- 6 Application
- 6 Conclusion

Presentation

Which evaluation protocol?

Difficulties

- 1 Choice of the clustering algorithm
- 2 Procedure (contextual information)
- 3 Data (e.g. noise, brightness, region)

Evaluation

- K-Means clustering
- Synthetic images
- Benefits of knowledge
 - Reduction of polluting data and volume

 K-Means parameterization

Introduction

Study limited to only one clustering algorithm to illustrate each benefits.

K-Means

- 1 A widely used clustering algorithm "the simplicity and computational speed of the K-means algorithm [...] has made it a popular choice"
- Initialization parameters (k, centroid) "the algorithm needs initializing values which greatly influence its terminating optimal solution ... good initialization is crucial for finding globally optimal partitionings"

^{1. [4]} Anna D. Peterson Ranjan Maitra and Arka P. Ghosh. A systematic evaluation of different methods for initializing the k-means clustering algorithm, Computer Methods and Programs in Biomedicine, 2010 Christophe Rigaud

Introduction

Study limited to only one clustering algorithm to illustrate each benefits.

K-Means

- A widely used clustering algorithm "the simplicity and computational speed of the K-means algorithm [...] has made it a popular choice"1
- Initialization parameters (k, centroid) "the algorithm needs initializing values which greatly influence its terminating optimal solution ... good initialization is crucial for finding globally optimal partitionings"

^{1. [4]} Anna D. Peterson Ranjan Maitra and Arka P. Ghosh. A systematic evaluation of different methods for initializing the k-means clustering algorithm, Computer Methods and Programs in Biomedicine, 2010 Christophe Rigaud

Clustering algorithm

Introduction

Study limited to only one clustering algorithm to illustrate each benefits.

K-Means

- A widely used clustering algorithm "the simplicity and computational speed of the K-means algorithm [...] has made it a popular choice"
- Initialization parameters (k, centroid) "the algorithm needs initializing values which greatly influence its terminating optimal solution ... good initialization is crucial for finding globally optimal partitionings"

^{1. [4]} Anna D. Peterson Ranjan Maitra and Arka P. Ghosh., A systematic evaluation of different methods for initializing the k-means clustering algorithm, Computer Methods and Programs in Biomedicine, 2010
Christophe Rigaud

$ROI + number of classes \Rightarrow reduction of polluting data and volume$

4 classes

ROI + number of classes \Rightarrow reduction of polluting data and volume

ROI + number of classes ⇒ reduction of polluting data and volume

4 classes

Christophe Rigaud

ROI + number of classes ⇒ reduction of polluting data and volume

4 classes

D ⇒

2 classes

ROI improve efficiency and save time.

Number of classes ⇒ K-Means parameterization

A priori number of cluster

- Computing time saving
- Optimal clustering

^{1. [5,} Ray - 1999] S Ray and R H Turi, Determination of number of clusters in k-means clustering ..., Advances in Pattern Recognition and Digital Techniques, 2007 Christophe Rigaud

Number of classes + ordering = centroids \Rightarrow K-Means parameterization

5 classes

Number of classes + ordering = centroids \Rightarrow K-Means parameterization

5 classes

3 classes

Number of classes + ordering = centroids \Rightarrow K-Means parameterization

Careful seeding = better clustering

Road map

Introduction

- Introduction
- 2 Knowledge representation
- 3 Inference engine
- Evaluation
- 6 Application
 - Presentation
 - Context
 - Use case : tumor
 - Use case : vessel
- 6 Conclusion

Introduction

sentation

- Visualization only: less restrictive than segmentation
- Preliminary results for two use cases
- Medical image from IRCAD ¹ database (ground truth)

^{1.} IRCAD : Institut de Recherche contre les Cancers de l'Appareil Digestif Christophe Rigaud

Introduction

Presentation

- Visualization only: less restrictive than segmentation
- Preliminary results for two use cases
- Medical image from IRCAD¹ database (ground truth)

^{1.} IRCAD : Institut de Recherche contre les Cancers de l'Appareil Digestif Christophe Rigaud

Context

t = 1

Inference engine

- 1 Number of classes = 3
- Ordering = tumor < liver < vessel</p>

Clustering and windowing for tumor

Clustering and windowing for tumor

Clustering and windowing for tumor

Windowing for tumor

Christophe Rigaud

Clustering and windowing for vessel

Windowing for vessel

Christophe Rigaud

Road map

Introduction

- Introduction
- 2 Knowledge representation
- 3 Inference engine
- Evaluation
- 6 Application
- 6 Conclusion

Conclusion

Results

- Generic method for image understanding
- 2 Non quantitative \Rightarrow adaptability
- Constraints:
 - 1 Perfectly segmented masks
 - 2 Complete graph completion

Refinements

- N type value to handle multiplicity and optionality
- Node fully included by successors

Personal

- Very pleasant job (research, tools)
- ² Formalization is not easy
- The best part just started

Introduction

A. Deruyver, Y. Hodéb, and L. Brun.

Image interpretation with a conceptual graph: Labeling over-segmented images and detection of unexpected objects.

Artificial Intelligence, 173:1245–1265, 2009.

J.-B. Fasquel, V. Agnus, J. Moreau, L. Soler, and J. Marescaux.

An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge. Computer Methods and Programs in Biomedicine, 82:216–230, 2006.

C. Hudelot, J. Atif, and I. Bloch.
 Fuzzy spatial relation ontology for image interpretation.

Fuzzy Sets and Systems, 159:1929-1951, 2008.

Anna D. Peterson Ranjan Maitra and Arka P. Ghosh.

A systematic evaluation of different methods for initializing the k -means clustering algorithm.

Computer Methods and Programs in Biomedicine, 2010.

S Ray and R H Turi.

Determination of number of clusters in k-means clustering and application in colour image segmentation (invited paper).

In Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques. India, ISBN: 81-7319-347-9, 2007.